Designing a Database for a Real Estate Machine

Nikhita Singh
Zach Mulder
Jeff Khvu
Winne Yan
Ray Valadez
Michael Tran
Christopher Au
Freddy Kurniawan
Meet the Client

Owner: Tom Anthony
“a real estate machine”

- **$** Alterre Partners
 - acquire new properties

- **_asset** Asset Construction
 - renovate properties

- **house** Anthony Associates
 - rent and sell properties
the property pipeline

find → invest → renovate → rent + sell
Key Relations for Overall Operations

Property (PropID, Street, City, Zip_Code, Neighborhood, # of sq. ft, # of Bedrooms, # of Bathrooms, Purchase_Date, Renovation_Type)

Person (PID, Lname, Fname, HomePhone#, CellPhone#, Fax#, Street, City, Zip_Code)

Skill (SkillID, Name, Worker’s Compensation Rate)

Employee_has_Skill (SkillID\(^1\) \(1\), PID\(^2\)\(f\), Rating (1-10), Primary Skill Y/N)

Credit_CARD (CCN, Card_Type, Credit_Limit, Expiration_Date)

Employee_has_CC (CCN\(^1\)\(8\), PID\(^2\)\(f\))

Employee_works_on_Job (PID\(^2\)\(f\), JobID\(^1\)\(9\))

Tenant_Rents_Unit (PID\(^2\)\(b\), PropID\(^1\)\(a\), Unit#\(^2\)\(a\), Start_Date, End_Date)

✓ Overview of property data
✓ Record key data for all individuals involved
✓ Track employee data
✓ Manage employee skills
✓ Track tenants for rental properties
Key Relations for Investment Tracking

Investment (NoteID, PID²a, Renewal, Investor_Name, Year_In, Date_In, Date_Out, Notes_Amount, Share_of_Pool, Investment_Period, Investment_Period_Allocation, Weighted_Shares, Interest, Profit_Share, Total_Return, Year³)

Yearly_Pool (NoteID, PID²a, Year, Investment, Profit, Investor_Profit)

Title_Company (TCID, Company_Name, Company_Phone#, PID²a)

- ✓ Manage individual investments
- ✓ View investment data on an annual basis
- ✓ Track profit sharing and returns
Relations for Construction Management

Subcontractor (SCID, Subcontractor_Name, Street, City, Zip_Code, Trade_Code, Pay_Status, Phone#, Website, Construction_Type)

Subcontractor_Works_on_Job (SCID\(^{13}\), JobID\(^{10}\), PropID\(^{1b}\), Bid)

Subcontractor_Insures_Property (PropID\(^{1b}\), SCID\(^{13}\), Maximum_Coverage, Policy#, Insurance_Type, Deductible, Term_Length)

Supplier (SupplierID, Supplier_Name, Street, City, Zip_Code, Trade_Code, Pay_Status, Phone#, Website, Construction_Type)

Job_Has_Supplier (SupplierID\(^{16}\), JobID\(^{10}\), PropID\(^{1b}\))

Construction_Schedule (ScheduleID, PropID\(^{1b}\), Milestone, Start_Date, End_Date, Duration, %Completed)

Milestone (PropID\(^{1b}\), MilestoneID, Milestone, Start Date, End Date, Duration)

Job (JobID, PropID\(^{1b}\), Duration, Start_Date, Finish_Date, Predecessors, % Complete, Cost, SkillID_Needed, Skill_Need, Workers_Needed, Subcontractor Y/N)

Cost_Estimate (CEID, PropID\(^{1b}\))

- ✓ Manage construction schedules
- ✓ Track subcontractor and supplier info and projects
- ✓ View milestones for each property
- ✓ Identify necessary jobs for each property
- ✓ Estimate construction costs
Query 1: Construction Budget

How can we estimate the construction costs based on data from previous properties?

Construction types:
- mega
- mini
- condo
- new

Generate confidence intervals based on past data:
- mean: 129K to 134K
- lower bound: 90K to 110K
- upper bound: 20K to 35K

Calculate range of construction costs for new property.

Steps:
1. find
2. invest
3. renovate
4. rent & sell
Q1: Construction Budget Process

SQL
Extracts data from MS Access regarding past construction projects

Microsoft Excel
Given the renovation type and characteristics of a new property, generates mean and confidence intervals for construction budget

Microsoft Access
Access provides a form to add estimate to the related table

Matlab
Generates analytics on previous properties through box plots

Concepts Applied
Confidence Intervals
Box Plots
Q1: Construction Budget SQL

SELECT [Cost Estimate].[CostEstimateID], [Property].[PropID], [Property].[# of sq ft], [Property].[Renovation Type],
Sum(IIF([Property].[Renovation Type] = 'New Property', [Property].[# of sq ft]*[Work Class].[New Rev Unit Cost/SF],
IIF([Property].[Renovation Type] = 'Condo', [Property].[# of sq ft]*[Work Class].[Condo Rev Unit Cost/SF],
IIF([Property].[Renovation Type] = 'Mini', [Property].[# of sq ft]*[Work Class].[Mini Rev Unit Cost/SF],
IIF([Property].[Renovation Type] = 'Mega', [Property].[# of sq ft]*[Work Class].[Mega Rev Unit Cost/SF], 0)))) AS PropTotalCost
FROM Property, [Work Class], [Cost Estimate]
WHERE [Property].[PropID] = [Cost Estimate].[PropID]
GROUP BY [Property].[PropID], [Property].[# of sq ft], [Property].[Renovation Type], [Cost Estimate].[CostEstimateID];
Q1: Construction Budget Output

The query displays projected construction cost, and the bounds obtained from confidence intervals are shown in the table.

<table>
<thead>
<tr>
<th>CostEstimateID</th>
<th>PropID</th>
<th># of sq ft</th>
<th>Renovation Type</th>
<th>PropTotalCost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2100</td>
<td>New Property</td>
<td>$341,481.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1500</td>
<td>Condo</td>
<td>$140,910.00</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1700</td>
<td>Mini</td>
<td>$166,498.00</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1500</td>
<td>Mega</td>
<td>$243,810.00</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1600</td>
<td>New Property</td>
<td>$260,176.00</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2000</td>
<td>Mega</td>
<td>$325,080.00</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>2000</td>
<td>Mini</td>
<td>$195,880.00</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1300</td>
<td>Condo</td>
<td>$122,122.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CostEstimateID</th>
<th>PropID</th>
<th>Renovation Type</th>
<th>Estimated Construction Cost</th>
<th>Lower Bound</th>
<th>Average</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>New Property</td>
<td>$341,481.00</td>
<td>$230,603.43</td>
<td>$290,665.38</td>
<td>$350,727.32</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Mini</td>
<td>$166,498.00</td>
<td>$161,375.54</td>
<td>$199,960.83</td>
<td>$238,546.12</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Mega</td>
<td>$243,810.00</td>
<td>$178,539.62</td>
<td>$225,164.50</td>
<td>$311,789.38</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>New Property</td>
<td>$260,176.00</td>
<td>$230,603.43</td>
<td>$290,665.38</td>
<td>$350,727.32</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Mega</td>
<td>$325,080.00</td>
<td>$178,539.62</td>
<td>$225,164.50</td>
<td>$311,789.38</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>Mini</td>
<td>$195,880.00</td>
<td>$161,375.54</td>
<td>$199,960.83</td>
<td>$238,546.12</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>Condo</td>
<td>$122,122.00</td>
<td>$105,536.64</td>
<td>$118,207.83</td>
<td>$130,879.03</td>
</tr>
</tbody>
</table>
Matlab Code

```matlab
function [] = myBoxPlot(data1, textdata1)
    X4 = textdata1(:,4);
    X5 = data1(:,5);
    n = length(data1);
    A = [];
    for i=2:(n+1)
        if strcmp(X4(i), 'New Property') == 1
            A(i-1,1) = X5(i-1);
            A(A==0) = [];
        elseif strcmp(X4(i), 'Condo') == 1
            B(i-1,1) = X5(i-1);
            B(B==0) = [];
        elseif strcmp(X4(i), 'Mini') == 1
            C(i-1,1) = X5(i-1);
            C(C==0) = [];
        elseif strcmp(X4(i), 'Mega') == 1
            D(i-1,1) = X5(i-1);
            D(D==0) = [];
        end
    end
    subplot(2,2,1), boxplot(A, 'orientation', 'horizontal');
    title('New Renovation');
    subplot(2,2,2), boxplot(B, 'orientation', 'horizontal');
    title('Condo Renovation');
    subplot(2,2,3), boxplot(C, 'orientation', 'horizontal', 'whisker', 4);
    title('Mini Renovation');
    subplot(2,2,4), boxplot(D, 'orientation', 'horizontal');
    title('Mega Renovation');
    set(gcf, 'color', [1 1 1])
end
```

box plots show spread of construction costs for each type of property
Query 2: Project Management

How can we track the progress on a property and identify critical tasks?

28 “To-dos”

Design
Demolition
Grading & Site Prep
Plumbing
Foundation
Framing
Roofing
Windows
Exterior Doors & Frames
Electrical
HVAC & Sheet Metal
Insulation
Drywall
Cabinets
Doors & Trim
Garage Doors
Painting
Tile
Granite
Wood Top
Shower Doors
Finish Hardware
Flooring
Appliances
Decorative Light Fixtures
Cleaning
Fencing
Landscaping

Gantt Chart
Q2: Project Management Process

Microsoft Project
Input jobs by property and start and end date of construction project. Automatically generates timeline for project using CPM and identifies critical jobs.

Microsoft Excel
Links to Microsoft Project data and tracks changes.

Microsoft Access
Displays jobs related to each property and provides analytics + progress reports.

Concepts Applied
Critical Path Method
Network Graphs
Q2: Project Management

- **Tasks & Duration**
 - Table listing tasks like Design, Demolition, Grading & Site Prep, etc., with corresponding durations.

- **Timeline**
 - Bar chart showing dates from April 14, 2013, to August 18, 2013.
 - Critical tasks marked with specific days.
 - Slack time indicated for certain tasks.

- **Budget**
 - Bar chart showing budget allocation with amounts like $10,000.00, $15,000.00, $10,500.00, etc.

- **Slack**
 - Assigned to ID

- **Track % Completion**
 - Displays completion percentage for each task.

- **Displays Current Date**
 - Indicates the current date on the timeline.

- **Critical Tasks**
 - High-priority tasks highlighted on the timeline.
Q2: Project Management SQL

```
SELECT [Job].[Property], [Job].[Task Name],
(IIF([Job].[% Complete]=100,'Complete', IIF([Job].
[Complete]>0 AND [Job].[% Complete]<100,'In Progress',
IIF([Job].[% Complete]=0 AND Date()>[Job].
[Start], 'Late', IIF([Job].[% Complete]=0,'Pending',' ')))) AS Completion,
job.Start, job.Finish, job.[% Complete]
FROM Job
ORDER BY job.start;
```
Q2: Project Management Output

<table>
<thead>
<tr>
<th>Property</th>
<th>Task Name</th>
<th>Completion</th>
<th>Start</th>
<th>Finish</th>
<th>% Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Demolition</td>
<td>In Progress</td>
<td>4/25/2013</td>
<td>5/7/2013</td>
<td>20%</td>
</tr>
<tr>
<td>1</td>
<td>Foundation</td>
<td>Late</td>
<td>5/1/2013</td>
<td>5/30/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Grading & Site</td>
<td>In Progress</td>
<td>5/7/2013</td>
<td>5/16/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Design</td>
<td>Pending</td>
<td>5/31/2013</td>
<td>6/14/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Plumbing</td>
<td>Pending</td>
<td>6/17/2013</td>
<td>7/18/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Framing</td>
<td>Pending</td>
<td>6/17/2013</td>
<td>6/28/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Insulation</td>
<td>Pending</td>
<td>7/1/2013</td>
<td>7/5/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Roofing</td>
<td>Pending</td>
<td>7/1/2013</td>
<td>7/16/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Electrical</td>
<td>Pending</td>
<td>7/1/2013</td>
<td>7/24/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>HVAC & Sheet</td>
<td>Pending</td>
<td>7/1/2013</td>
<td>7/16/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Drywall</td>
<td>Pending</td>
<td>7/8/2013</td>
<td>7/11/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Exterior Doors</td>
<td>Pending</td>
<td>7/19/2013</td>
<td>8/7/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Windows</td>
<td>Pending</td>
<td>7/19/2013</td>
<td>8/7/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Doors & Trim</td>
<td>Pending</td>
<td>7/25/2013</td>
<td>8/7/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Garage Doors</td>
<td>Pending</td>
<td>7/25/2013</td>
<td>7/31/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Tile</td>
<td>Pending</td>
<td>7/25/2013</td>
<td>8/1/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Flooring</td>
<td>Pending</td>
<td>7/25/2013</td>
<td>8/7/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Shower Doors</td>
<td>Pending</td>
<td>8/2/2013</td>
<td>8/5/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Painting</td>
<td>Pending</td>
<td>8/8/2013</td>
<td>8/21/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Cabinets</td>
<td>Pending</td>
<td>8/8/2013</td>
<td>8/27/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Granite</td>
<td>Pending</td>
<td>8/28/2013</td>
<td>8/29/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Wood Top</td>
<td>Pending</td>
<td>8/28/2013</td>
<td>8/29/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Finish Hardware</td>
<td>Pending</td>
<td>8/30/2013</td>
<td>9/5/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Appliances</td>
<td>Pending</td>
<td>9/6/2013</td>
<td>9/12/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Decorative Lights</td>
<td>Pending</td>
<td>9/6/2013</td>
<td>9/10/2013</td>
<td>0%</td>
</tr>
<tr>
<td>1</td>
<td>Cleaning</td>
<td>Pending</td>
<td>9/13/2013</td>
<td>9/13/2013</td>
<td>0%</td>
</tr>
</tbody>
</table>

find **invest** **renovate** rent & sell
What is the best way to schedule workers?

1. Find all employees
2. Sort by skills & availability
3. Generate optimal schedule

Query 3: Worker Schedule
Q3: Worker Schedule Process

Custom VBA Macro
Generates data file from MS Access

Python
Code initiates the AMPL program run

AMPL
Solves integer program that minimizes cost of worker wages while fulfilling skill and worker requirements

Custom VBA Macro
AMPL saves output and macro translates into readable output in MS Access

Concepts Applied
Integer Programs
Scheduling
Q3: Worker Schedule SQL

```
SELECT DISTINCT j.id, e.pid, j.SkillID, e.[Hourly Rate]*(1+s.[Worker's Compensation Rate]) AS [Loaded Rate]
FROM skill AS s, (job AS j INNER JOIN [Employee Skill Rating] AS es ON j.skillid=es.skillid) INNER JOIN employee AS e ON e.pid = es.pid
WHERE e.[Employment Type] = "Laborer" and s.skillid = j.skillid
ORDER BY e.pid, j.id;
```

Calculates Burden Rate

Total cost of worker i to perform job j

```
SELECT id, pid, job.skillid, [Skill Rating (1-10)] AS rating
FROM job INNER JOIN [employee skill rating] ON job.skillid = [employee skill rating].skillid
ORDER BY pid, id;
```

Skill Matrix

Provides the skill of worker i performing job j
Q3: Worker Schedule Model

Integer Program

Min $\sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} x_{ij}$

s.t. $\sum_{i=1}^{n} S_{ij} x_{ij} \geq N_j \sum_{i=1}^{n} x_{ij} \forall j$

$x_{ij} \leq A_{ij} \forall i, j$

$\sum_{i=1}^{n} x_{ij} = W_j \forall j$

$(x_{ki} + x_{kj}) O_{ij} \leq 1 \forall i, j, k$

$x_{ij} = 1 \exists i, j$

Where $x_{ij} = \begin{cases} 1 & \text{if worker } i \text{ is scheduled for job } j \\ 0 & \text{otherwise} \end{cases}$

n is the number of workers

m is the number of jobs

C is the cost of worker i completing job j

N is the average skill needed for job j

S is the skill of worker i for job j

A is the availability of worker i for job j (Assume $A_{ij} = 1$)

W is the number of workers needed for job j

$O_{ij} = \begin{cases} 1 & \text{if job } i \text{ overlaps job } j \\ 0 & \text{otherwise} \end{cases}$
Q3: Worker Schedule Output

<table>
<thead>
<tr>
<th>ID</th>
<th>Property</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Predecessor</th>
<th>% Complete</th>
<th>Cost</th>
<th>SkillID</th>
<th>SkillNeed</th>
<th>WorkersNec</th>
<th>Subcontract</th>
<th>Assigned_Tc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 Design</td>
<td>1 Design</td>
<td>11 days</td>
<td>5/31/2013</td>
<td>6/14/2013</td>
<td>2, 3, 5</td>
<td>0%</td>
<td>$32,000.00</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>142,144</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 Demolition</td>
<td>1 Demolition</td>
<td>10 days</td>
<td>4/25/2013</td>
<td>5/7/2013</td>
<td></td>
<td></td>
<td>$10,000.00</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 Grading & Site</td>
<td>1 Grading & Site</td>
<td>8 days</td>
<td>5/7/2013</td>
<td>5/16/2013</td>
<td></td>
<td></td>
<td>$15,000.00</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>136,144</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 Plumbing</td>
<td>1 Plumbing</td>
<td>24 days</td>
<td>6/17/2013</td>
<td>7/18/2013</td>
<td></td>
<td></td>
<td>$62,000.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 Foundation</td>
<td>1 Foundation</td>
<td>10 days</td>
<td>5/1/2013</td>
<td>5/30/2013</td>
<td></td>
<td></td>
<td>$1,800.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1 Framing</td>
<td>1 Framing</td>
<td>10 days</td>
<td>6/17/2013</td>
<td>6/28/2013</td>
<td></td>
<td></td>
<td>$14,200.00</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1 Roofing</td>
<td>1 Roofing</td>
<td>12 days</td>
<td>7/1/2013</td>
<td>7/16/2013</td>
<td></td>
<td></td>
<td>$6,000.00</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1 Windows</td>
<td>1 Windows</td>
<td>14 days</td>
<td>7/19/2013</td>
<td>8/3/2013</td>
<td></td>
<td></td>
<td>$9,000.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1 Exterior Doors</td>
<td>1 Exterior Doors</td>
<td>14 days</td>
<td>7/19/2013</td>
<td>8/3/2013</td>
<td></td>
<td></td>
<td>$2,000.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>115,144</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1 Electrical</td>
<td>1 Electrical</td>
<td>18 days</td>
<td>7/1/2013</td>
<td>8/24/2013</td>
<td></td>
<td></td>
<td>$6,000.00</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1 HVAC & Sheet</td>
<td>1 HVAC & Sheet</td>
<td>12 days</td>
<td>7/13/2013</td>
<td>8/3/2013</td>
<td></td>
<td></td>
<td>$9,200.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1 Insulation</td>
<td>1 Insulation</td>
<td>5 days</td>
<td>7/13/2013</td>
<td>7/18/2013</td>
<td></td>
<td></td>
<td>$1,000.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1 Drywall</td>
<td>1 Drywall</td>
<td>4 days</td>
<td>7/8/2013</td>
<td>7/11/2013</td>
<td></td>
<td></td>
<td>$4,500.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1 Cabinets</td>
<td>1 Cabinets</td>
<td>14 days</td>
<td>8/8/2013</td>
<td>8/28/2013</td>
<td></td>
<td></td>
<td>$4,500.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>115,144</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1 Doors & Trim</td>
<td>1 Doors & Trim</td>
<td>10 days</td>
<td>7/25/2013</td>
<td>8/7/2013</td>
<td></td>
<td></td>
<td>$6,000.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1 Garage Doors</td>
<td>1 Garage Doors</td>
<td>5 days</td>
<td>7/25/2013</td>
<td>7/31/2013</td>
<td></td>
<td></td>
<td>$6,000.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1 Painting</td>
<td>1 Painting</td>
<td>10 days</td>
<td>8/8/2013</td>
<td>8/21/2013</td>
<td></td>
<td></td>
<td>$5,000.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1 Tile</td>
<td>1 Tile</td>
<td>6 days</td>
<td>7/25/2013</td>
<td>8/31/2013</td>
<td></td>
<td></td>
<td>$5,000.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1 Granite</td>
<td>1 Granite</td>
<td>2 days</td>
<td>8/28/2013</td>
<td>8/30/2013</td>
<td></td>
<td></td>
<td>$1,200.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1 Wood Top</td>
<td>1 Wood Top</td>
<td>2 days</td>
<td>8/28/2013</td>
<td>8/30/2013</td>
<td></td>
<td></td>
<td>$2,800.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1 Shower Doors</td>
<td>1 Shower Doors</td>
<td>2 days</td>
<td>8/2/2013</td>
<td>8/4/2013</td>
<td></td>
<td></td>
<td>$1,000.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1 Finish Hardware</td>
<td>1 Finish Hardware</td>
<td>5 days</td>
<td>8/30/2013</td>
<td>9/5/2013</td>
<td></td>
<td></td>
<td>$5,500.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1 Flooring</td>
<td>1 Flooring</td>
<td>10 days</td>
<td>9/1/2013</td>
<td>9/21/2013</td>
<td></td>
<td></td>
<td>$1,700.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1 Appliances</td>
<td>1 Appliances</td>
<td>5 days</td>
<td>9/6/2013</td>
<td>9/12/2013</td>
<td></td>
<td></td>
<td>$5,000.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1 Decorative Light</td>
<td>1 Decorative Light</td>
<td>3 days</td>
<td>9/12/2013</td>
<td>9/15/2013</td>
<td></td>
<td></td>
<td>$2,500.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1 Cleaning</td>
<td>1 Cleaning</td>
<td>1 day</td>
<td>9/13/2013</td>
<td>9/13/2013</td>
<td></td>
<td></td>
<td>$500.00</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>155</td>
<td></td>
</tr>
</tbody>
</table>

- **find**
- **invest**
- **renovate**
- **rent & sell**

code auto populates task assignments to individuals

output indicates optimal assignment of jobs to people
What should be the listing price for a new property?

Query 4: Selling Price

- Extract data on properties
- Apply analysis
 - Multiple regression models
 - ANOVA
- Project selling price

Formula:

\[\text{Selling Price} = \text{no. beds} + \text{no. bath} + \text{sq. ft} + \text{construction cost} + \text{advertising cost} \]
Q4: Selling Price Process

Microsoft Excel
Based on past property data, generates a multiple regression model to determine the optimal selling price.

Concepts Applied
Multiple Regression
ANOVA

SQL
Based on multiple regression model, outputs the optimal price for a new property based on property characteristics.

Microsoft Access
Displays similar properties in a detailed report.
Q4: Selling Price Regression Model

Price

= 23656
- 290481*(Neighborhood A)
- 49212*(Neighborhood B)
+ 32629*(Neighborhood C)
+ 31232*(Neighborhood D)
+ 2997*(Neighborhood E)
+ 26030*(Neighborhood F)
- 288*(Neighborhood G)
- 21459*(Neighborhood H)
- 78600*(Neighborhood I)
+ 11388*(Neighborhood J)
+ 19352*(NoBedroom)
+ 28392*(NoBathroom)
- 75*(SqFt)
- 0.52*(Purchase Price)
+ 0.07*(Construction Cost)
+ 17*(Advertising Cost)

R² = 0.95

adjusted R² = 0.91
Q4: Selling Price SQL

SELECT DISTINCT [Property].[PropID], 19352.32*Property.[# of bedrooms]+28392.23*Property.[# of bathrooms]+(-75.78)*Property.[# of sq ft]+(-0.52)*Property.[Purchase Price]+17.32*[Advertising Cost].[Total Advertisement Cost]+0.71*[Construction Cost].Average +23656.39+(If(Property.[Zip code]=94706,-290481.61,If(Property.[Zip code]=94578,-49212.43,If(Property.[Zip code]=94619,32629.51,If(Property.[Zip code]=94501,31232.4,If(Property.[Zip code]=94610,2997.06,If(Property.[Zip code]=94602,26030.27,If(Property.[Zip code]=94605,-288.91,If(Property.[Zip code]=94606,-21459.23,If(Property.[Zip code]=94702,-78600.34,If(Property.[Zip code]=94621,11388.34,0)))))))))) AS EstimatedPrice
FROM Property, [Advertising Cost], [Cost Estimate], [Construction Cost]

outputs optimal sales price based on Excel regression model
uses IF statements to account for different property ZIP codes
gets variables for regression on property characteristics
Q4: Selling Price Output

estimated selling price determined by multiple regression model

<table>
<thead>
<tr>
<th>PropID</th>
<th>EstimatedPrice</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>771877.42</td>
</tr>
<tr>
<td>29</td>
<td>333586.68</td>
</tr>
<tr>
<td>30</td>
<td>554741.99</td>
</tr>
<tr>
<td>31</td>
<td>474289.77</td>
</tr>
<tr>
<td>32</td>
<td>556565.18</td>
</tr>
<tr>
<td>33</td>
<td>765980.54</td>
</tr>
<tr>
<td>34</td>
<td>814715.05</td>
</tr>
<tr>
<td>35</td>
<td>634063.46</td>
</tr>
<tr>
<td>36</td>
<td>380328.52</td>
</tr>
<tr>
<td>37</td>
<td>304867.95</td>
</tr>
<tr>
<td>38</td>
<td>1086691.29</td>
</tr>
<tr>
<td>39</td>
<td>300457.57</td>
</tr>
<tr>
<td>40</td>
<td>265947.82</td>
</tr>
<tr>
<td>41</td>
<td>287619.2</td>
</tr>
</tbody>
</table>
The New Property Dashboard

Search Criteria:
- Price: 650,000 to 700,000
- Beds: 2
- Bath: 1
- Sq. ft: 1800

Neighborhood Map With Similar Properties

Crime Rate Heat Map Overlay

View Detailed School Ratings

Cragmont Elementary School
830 Regal Rd
Berkeley CA 94708
(510) 644-8810

Grade: K-5
Students: 393
Teachers: 23

GreatSchools rating: 8 out of 10
Query 5: Return on Investment

What is the estimated return for each stakeholder?

- Find investments + profits for a given year
- Apply analytics
- Determine return per $1 for each investor
Q5: Return on Investment Process

Microsoft Access
Investment table contains data on all investments made

Microsoft Excel
Conducts analytics on investments and actual profits and % for each investor

Microsoft Access
Displays analytics in investor table

SQL
SQL extracts info and calculated per $1 return for each investor and outputs report

Concepts Applied:
Engineering Economics
Q5: Return on Investment SQL

SELECT A.Return+B.Return AS Returns, A.Investment +B.Investment AS Investments, (A.Return+B.Return)/(A.Investment+B.Investment) AS Rate FROM

(SELECT sum([Investment Calculation].[Total Return]) AS Return, sum([Investment Calculation].[Note Amount]) AS Investment FROM [Investment Calculation] WHERE [Investment Calculation].[Year]=2008) AS A,

(SELECT sum([Investment Calculation].[Total Return]) AS Return, sum([Investment Calculation].[Note Amount]) AS Investment FROM [Investment Calculation] WHERE [Investment Calculation].[Year]=2009) AS B;

calculates average and outputs estimated return rate as return/$1 invested

table generated with sum of investments for a given year

table generated with sum of investments for another given year
Q5: Investment Model and Output

Applying Engineering Economics
Present and Future Value Calculations
Time Shares
Shared Allocation

\[\frac{PV\left(\sum_{i=1}^{n} 2009.return_i \right) + PV\left(\sum_{i=1}^{n} 2010.return_i \right)}{PV\left(\sum_{i=1}^{n} 2009.note_i \right) + PV\left(\sum_{i=1}^{n} 2010.note_i \right)} \]

2008 to 2009 ratio: 0.78
2009 to 2010 ratio: 1.02
2010 to 2011 ratio: 1.15
Decomposing to 1NF and 2NF:

Job (JobID, ProplD1b, Duration, Start_Date, Finish_Date, Predecessors, % Complete, Cost, SkillID_Needed, Skill_Need, Workers_Needed, Subcontractor Y/N)

To normalize to 1NF and 2NF:

Job (JobID, ProplD1b, Duration, Start_Date, Finish_Date, % Complete, Cost, SkillID_Needed, Skill_Need, Workers_Needed, Subcontractor Y/N)

Predecessors (JobID, Predecessor)
Decomposing to 3NF & BCNF

Job (JobID, PropID1b, \textbf{Duration}, Start_Date, Finish_Date, Predecessors, % Complete, Cost, SkillID_Needed, Skill_Need, Workers_Needed, Subcontractor Y/N)

To normalize to 3NF:

Job (JobID, PropID1b, Start_Date, Finish_Date, % Complete, Cost, Skill_Need, Workers_Needed, Subcontractor Y/N)

Job_Predecessors (JobID, Predecessor)

Job_Timeline (Start_Date, Finish_Date, Duration)
Decomposing to 2NF

Investment (NoteID, PID2a, Renewal, \textbf{Investor_Name}, Year_In, Date_In, Date_Out, Notes_Amount, Share_of_Pool, Investment_Period, Investment_Period_Allocation, Weighted_Shares, Interest, Profit_Share, Total_Return, Year5)

To normalize to 2NF:

Investment (NoteID, PID2a, Renewal, Year_In, Date_In, Date_Out, Notes_Amount, Share_of_Pool, Investment_Period, Investment_Period_Allocation, Weighted_Shares, Interest, Profit_Share, Total_Return, Year5)

Investment_Name (PID2a, Investor_Name)
To normalize to BCNF:

Construction_Schedule \((\text{ScheduleID, PropID}^{1b}, \text{Milestone})\)

Schedule_Milestone \((\text{PropID}^{1b}, \text{Milestone}, \text{Start_Date}, \text{End_Date}, \% \text{Completed})\)

Schedule_Start \((\text{Start_Date, End_Date, Duration})\)
Thank You To....

Tom Anthony
Ian Cameron

Terri Brown
Frank Adams
Hany Rezke

Other members of the Anthony Associates, Asset Construction, and Alterre Partner teams